Evaluating the Costs and Benefits of Shared Dockless E-Scooters

Maxence Assié, Lina Faïk, Delphine Rattez, Nicolas Coulombel, Alice Mével

8 octobre 2020 – Séminaire ELUE

Section 1 - General Background

Section 2 - Methodology

Section 3 – Results

Section 4 – Sensitivity analysis

Section 5 - Conclusion

General Background

A both successful and controversial introduction

Introduced in 2018 in Lyon and Paris, Lime free-floating e-scooters generate mixed-reactions.

A rapid and massive adoption...

9 million

Estimated number of Lime trips in 2019 in Paris

3 million

Estimated number of Lime trips in 2019 in Lyon

...that raised concerns

Public space occupation

Durability

Vandalism

Security

Unregulated market

A challenging context

In front of these concerns, there is a growing **need to supervise free-floating e-scooters** from public authorities, that are wondering whether they should support or regulate their development.

Two distinct cities that face similar mobility challenges

Decrease air pollution & greenhouse gas

11 teq CO2/hab in Paris 7 teq CO2/hab in Lyon Source:: wwf

Reduce congestion

39% : congestion level in Paris 30% : congestion level in Lyon

Source: TomTom Traffic Index

A limited literature on the impacts of e-scooters

In this context, operators have to adapt their service to be able to bring **the highest value to collectivity** and to demonstrate it based on quantitative data.

Exisiting data-driven studies on free-floating e-scooters in France is very limited:

-> Antoine Pestour. Approche socio-économique des enjeux relatifs aux trottinettes électriques en libre-services en France. 2019

It's an exploratory work and **first attempt of CBA** on free-floating e-scooter in France, whose results must be confirmed by further analysis based on more robust data.

Main difficulties

- Lack of available data
- Recentness of the service
- Constant improvements in the service

What is the collective added value that Lime brought to Paris and Lyon in 2019?

Section 2

Methodology

2 - Methodology

General methodology

- Comparative evaluation : costs and benefits with a project vs costs and benefits without a project
- Monetary valuation: In order to be able to compare two scenarios, costs and benefits are expressed in monetary values

Project Scenario Availability of Lime's free-floating e-scooters **Baseline countrefactual Scenario** Absence of Lime's free-floating e-scooters

Key stakeholders

Users

What is the added value compared to other alternatives ?

Operator

How much profit does the operator generate?

Municipality

What are the benefits of adding shared escooters for the city?

Externalities

To what extent are eshared scooters ecofriendly?

Main data of the reference scenario

	Paris 2019					
	Data	#	Sources			
	Estimated number of trip	9 million	Lime			
	Average trip distance (km)	3,8	6-t			
	Average trip time (min)	15,1	6-t			
	Average speed (km/h)	15	6-t			
	Fleet size at the end of the year	5000	Lime			
	Modal shift pattern Source 6-t					
L						
)%	20% 40%	60%	80% 10	0%		
	Car Public Transport Walking	Bike E-scooter	Scooter Non	е		

Lyon 2019 Sources Data # Estimated number of trip 3 million Lime Average trip distance (km) 3,22 6-t Average trip time (min) 12,9 6-t Average speed (km/h) 15 6-t Fleet size at the end of the year 2000 6-t Modal shift pattern Source 6-t 0% 20% 40% 60% 80% 100% ■ Car ■ Public Transport ■ Walking ■ Bike ■ E-scooter ■ Scooter ■ None

Section 3

Results

Socio-economic Net present value (NPV)

İİİ

Users Surplus Analysis

The total user surplus, over one year, is estimated to be €US1 million in Paris and €US2 million in Lyon.

X million hours saved in a year by the users in Paris (or x minutes per trip on average) and X million hours saved in Lyon.

X million additional spending in a year by the users in Paris (or €X per trip on average) and €X in Lyon.

Risk of death in e-scooter is n% the average level with the alternative modes.

Our analysis does not take into account the pleasure associated with riding a e-scooter leading to an understimation of the user surplus.

Users Surplus Analysis – key assumptions

- One of the key assumptions of the user surplus calculation are the modal shift patterns.
- The latter are also used in the computation of the environmental surplus.

		Paris	
		Modal Shift	Trip purpose
	Professional reasons		5%
Corr	Home-office/university reasons	00/	50%
Car	Other reasons (shopping, etc.)	8%	45%
	Unknown		0%
	Professional reasons		5%
Public	Home-office/university reasons	240/	50%
transport	Other reasons (shopping, etc.)	34%	44%
transport	Unknown		1%
	Professional reasons		4%
Molling	Home-office/university reasons	4.40/	46%
waiking	Other reasons (shopping, etc.)	44%	48%
	Unknown		2%
	Professional reasons		4%
D the	Home-office/university reasons	9%	56%
ыке	Other reasons (shopping, etc.)		40%
	Unknown		1%
	Professional reasons		2%
E	Home-office/university reasons	30/	55%
E-scooter	Other reasons (shopping, etc.)	2%	40%
	Unknown		4%
	Professional reasons		2%
	Home-office/university reasons	30/	55%
Scooter	Other reasons (shopping, etc.)	۷%	40%
	Unknown		4%
	Professional reasons		12%
News	Home-office/university reasons	20/	72%
None	Other reasons (shopping, etc.)	۷%	16%
	Unknown		0%
	Professional reasons		0%
	Home-office/university reasons		40%
Unknown	Other reasons (shopping, etc.)	0%	56%
	Unknown		44%

Users Surplus Analysis – key assumptions

Monetary values of time

	2019 - Ile de France
Professional	24,57€/h
Home-office/university	13,89€/h
Others	9,64€/h
Without detail of the purpose	11,82€/h

Source : Rapport Quinet

Monetary value of a statistical life (VSL)

	2019
VSL	€3 000 000

Source : French government

Total cost of ownership

	2019
Car	0,23€/km
Public transport	0,10 €/km
Bike	0,13€/km
E-scooter	0,27 €/km
Scooter	0,27 €/km
Taxi (fixed costs)	4,18€
Taxi (variable costs)	1,12 €/km
Lime (fixed costs)	1,00€
Lime (variable costs)	0,15 €/min

Source : Ecomobilité & Lime

Operator Surplus Analysis

The total operator surplus, over one year, is estimated to be €XX million in Paris and €YY million in Lyon.

- Operating costs and depreciation are the two main costs.
- The difference of revenue per trip between the two cities comes from shorter trips on average in Lyon, which decreases the profitability of each trip
- These results are very sensitive to assumptions that must be confirmed, as explained in the limit part.

Operator Surplus Analysis – key assumptions

	2019
Average cost of a e-scooter	330€
Payment cost	-0,3500 €/trip
Insurance	-0,0026 €/min
Maintenance & repairs	-0,0258€/min
Operating & charging	-0,0876 €/min
Number of trips during lifetime	480

Source : BCG

3 - Results

Municipality surplus

Municipalities require **royalties** from operators to allow them to develop their service in the streets, the amount of which is the content of the municipality surplus.

Main hypothesis

Lyon				
€/e-scooter/year				
	45			
	Paris			
Тах	Lower boundary	Higher Boundary		
€/e-scooter/year	# e-scooter	# e-scooter		
50	0	499		
55	500	999		
60	1000	2999		
65	3000	-		

Results

These results should be compared to the price to implement parking spots dedicated to escooters

Environmental Surplus Analysis

The total environmental surplus, over one year, is estimated to be €ES1 in Paris and €ES2 in Lyon.

X tonnes of CO2 emission in a year due to escooters in Paris (or 282 grams per trip on average) and **Y tonnes** in Lyon.

Manufacturing and **transport** from production sites in Asia to France of the e-scooter are the main contributors of e-scooter CO2 emissions.

These results are very sensitive to assumptions that must be confirmed, mainly the **lifetime** of an e-scooter.

3 - Results

Environmental Surplus Analysis - Paris

The more e-scooters substitute carbon and pollutant intensive transport mode, the better the environmental impact is. Lyon has similar trends.

Section 4

Sensitivity Analysis

Sensitive parameters

Our results are very sensitive to the following parameters:

How do results vary when changing these parameters?

Stated vs estimated travel costs

Heterogenity in the travel cost data...

€/km	Stated	Estimated travel costs	
Source	6-t	6-t	Ecomobilité
Location	Paris	Lyon	France
Walking	0,04	0,01	0
Public transport	0,58	0,72	0,098
Private car	1,29	0,95	0,225
Non private car	3,89	8,09	4,2+1,1/km
Bike	0,21	0,11	0,1
Scooter	0,55	0,12	0,3
E-scooter	1,21	1,20	1+0,15/km

We are more confident in the estimated travel costs than the stated costs because people often **misperceive** total cost of ownership of a transport mode

... impacts the results

It impacts the average travel cost savings per trip....

Estismated travel cost scenario Stated travel costs scenario

... that in turn impacts the NPV

With the stated travel costs, Paris NPV is positive for 2019, (highest proportion of taxis and VTC in Paris than in Lyon (6% vs 3%), inconsistency in the stated costs)

Values of time - How to include the specificity of riding a e-scooter in the value of time?

We have estimated roughly values of time per transport mode per purpose from the literature:

		€/n
	Professional reasons	16,22
Con	Home-office/university reasons	9,17
Car	Other reasons (shopping, etc.)	6,36
	Unknown	7,8
	Professional reasons	9,02
Public	Home-office/university reasons	5,1
Transport	Other reasons (shopping, etc.)	3,54
	Unknown	4,34
	Professional reasons	36,08
Malking	Home-office/university reasons	20,4
waiking	Other reasons (shopping, etc.)	14,16
	Unknown	17,36
	Professional reasons	20,79
Biko	Home-office/university reasons	11,75
DIKE	Other reasons (shopping, etc.)	8,16
	Unknown	10,00
	Professional reasons	31,19
Scootor	Home-office/university reasons	17,63
Scotler	Other reasons (shopping, etc.)	12,24
	Unknown	15,00
	Professional reasons	10,00
E-scooter	Home-office/university reasons	31,19
E-scooler	Other reasons (shopping, etc.)	17,63
	Unknown	12,24

Source: Own estimates based on Börjesson and Eliasson

These new values of time impact the user surplus ... Paris

... that in turn impact the NPV

With the values of time per transport mode, Paris NPV is positive for 2019.

Modal shift

NPV evolution with car modal shift increase

- Greater sensitivity in Paris -Trip volume
- Lime substitutes away
- more taxis and VTC trips in Paris than in Lyon
- and more PT trips

E-scooter lifetime

NPV evolution with lifetime increase (in million €)

Improvements come from:

Increase in **the operator surplus**, due to the the decrease of the depreciation

Increase in the environmental surplus

1.5 year

rough estimation of the e-scooter lifetime needed to have a positive impact on CO2 emission in both cities

Trace vs 6t data

Using the trace data decreases the users surplus by 64% and decreases the operator surplus by 75% due to shorter average trips. We use in our reference scenario 6t data because we have no trace for Lyon and because of the uncertainties associated with this method (waiting time, random trip purpose attribution).

	i di is				
	Tra	Trace		Reference scenario	
	€/trip	€/year	€/trip	€/year	
Users Surplus					
Value of the travel time					
savings/losses					
Travel cost savings/losses					
Travel Safety					
Operator Surplus					
Profit					
Municipality Surplus					
Taxes & Royalities paid by Lime					
Environmental Costs					
GHG reduction					
Local pollutant reduction					
TOTAL SURPLUS (NPV)					

Trace vs 6t data

Speed distribution study

Distribution of speed depending on the time period in Minneapolis

Limits

Inappropriate values of time that do not account for the specificity of Lime and leads to a probable underestimation of the users surplus.

Neglect of the impact of the new **intermodality** enabled by the presence of Lime.

Uncertainty and rapid-evolving data

Section 5

Conclusion

Discussion & Recommendations

Key take-away:

- Shared e-scooters are more interesting for large cities with a highly concentration of activity in the center and a saturated transport system
- E-scooters lifetime extension and modal shift from cars to e-scooters are two important levers to enhance the value Lime brings to society

Further work needed:

- Refining the values of time by building a discrete choice model based on a specific stated-preferences survey to users
- Precisely estimate modal shift (including within intermodal trips)
- Life-cycle analysis: improve robustness of results (including life expectancy)?
- Exploit data on **profitability** of the operator

Discussion & Recommendations

Recommendations:

- Implement swapable battery in order to reduce CO₂ emissions by developping intra-logistics instead of inter-logistics
- Target people living in the suburbs with a view to increase car modal shift in complex modal shift patterns.

Contacts

Étudiants:

Delphine Rattez	Maxence Assié	Lina Faik
delphine.rattez@psemail.eu	maxence.assie@psemail.eu	lina.faik@psemail.eu
06 66 69 61 71	06 03 70 31 65	07 82 58 07 23

Encadrants:

Nicolas Coulombel	Alice Mével
Professeur et chercheur	Citizing Analyst
à l'Ecole des Ponts	Socio-economic evaluation
Université Paris-Est – LVMT	of public investments and policies
E-mail: <u>nicolas.coulombel@enpc.fr</u>	E-mail: <u>alice.mevel@citizing-consulting.com</u>
Tel: 01 81 66 88 80	Tel: 06 99 91 17 22

Section 6

Appendix

Scope

Data sources

	Data	Sources	Limits	
	2019 Value of time/purpose/city	Rapport Quinet	Unappropriate values of time	
Travel time savings	Trip time/modal shift/purpose	6-t report	Stated data : risk of misperceptions	
	Cost of ownership /mode /km	Ecomobilité		
Travel cost savings	Trip distance/modal shift	6-t report	Stated data : risk of misperceptions	
	Fatality rate /other mode/km	OCDE Report		
Travel safety	Value of a statistical life	French government		
	Trip distance/modal shift	6-t report	Stated data : risk of misperceptions	
	Cost breakdown	BCG	Non specific to France	
Operator Profit	E-scooter lifetime	BCG	Non specific to France	
	Average trip distance	6-t	Stated data : risk of misperceptions	
Municipality curalus	Royalties amount/city/e-scooter	Lime		
	Fleet size/city	Lime		
	E-scooter CO2 emission / km	EY / Arcadis /Ademe	Non specific data to Lime	
GHG Reduction	CO2/km/other modes	EY /Ademe / MDPI		
	Trip distance/modal shift	6-t report	Stated data : risk of misperceptions	
	E-scooter lifetime	BCG	Non specific to France	
	Pollutants emission/mode	Academic paper	Non specific to France, neither recent	
Local Pollutants	Trip distance/modal shift	6-t report	Stated data : risk of misperceptions	
	E-scooter lifetime	BCG	Non specific to France	

User profile answering 6-t survey

The main source of data of the reference scenario are the results of the survey conducted in 2019 by 6t.

66 % of man

53 % of executives and senior intellectual workers

34 years old

Median income €2,333 Average in France: €1,692 in 2015 (Insee)

66 % of full-time workers

58 % of local people (from Ile-de-France or the metropole of Lyon)

3 - Results

Environmental Surplus Analysis -key assumptions

Monetary value of CO2

€/tonne	2019		
CO2	70,5		

Sources: Valeur de l'action pour le Climat

CO2 emission per transport mode

g/person/km	2019		
Petrol car	275		
Electric car	193		
Metro	18		
Electric bus	32		
Diesel Bus	69		
Walking	0		
Bike	0		
E-scooter	111		
Scooter	33		

Sources: Arcadis & EY & MDPI

Monetary values of pollutants

€/g	2019		
Nox	0,02		
PM2,5	0,10 €/g		
SO2	0,02 €/g		

Sources: Rapport Quinet

Pollutants emission per transport mode

	SO2 g/pax-km		PM2 Emission		NOx emission	
			g/pax-km		g/pax-km	
	Min	Max	Min	Max	Min	Max
Car	0,23	0,69	0,09	0,28	0,44	1,32
Public transport	0,01	0,04	0,04	0,14	0,14	0,54
Walking	-	-	-	-	-	-
Bike	0,01	0,01	0,06	0,06	0,01	0,02
E-scooter	0,09	0,02	0,10	0,19	0,01	0,03
Scooter	0,04	0,08	0,20	0,40	0,08	0,15

Sources: Cherry. Weinert. Xinmiao. 2008. Comparative environmental impacts of electric bikes in China.

Trace vs 6t data

Using google API to build a new model

- Merging start and end datasets
- Using google API to compute travelling time
- Removing too long distances according to Manhattan distances principle
- Adding weights to certain transport modes to create fairness between modes
- Attributing trip purposes and modal shift to the new trips defined

Starting points